1+**1 Complex of guanine quartet with alkali metal cations detected by electrospray ionization mass spectrometry**

Kazuaki Fukushima and Hideo Iwahashi*

Wakayama Medical College, 811-1 Kimiidera, Wakayama 641-8509 Japan. E-mail: chem1@wakayama-med.ac.jp

Received (in Cambridge, UK) 20th March 2000, Accepted 17th April 2000 Published on the Web 9th May 2000

Selective 1+**1 complex formation of a square quartet of 9-ethylguanine with small alkali metal cations (Li+, Na+) was detected by electrospray mass spectrometry**

The guanine base is unique as a pair of hydrogen-donating groups (NH and $NH₂$) and a pair of hydrogen-accepting groups $(C=O)$ and N) are arranged on adjacent edges of the molecule [Fig. 1(a)]. Thus, a guanine base can form a self-complementary, hydrogen-bonded square quartet [Fig. 1(b)], which has been widely found in gels of guanosine derivatives **1**1,2 and in parallel³ and antiparallel⁴ quadruple strands of guanine-rich oligonucleotides such as telomeric DNA.

Fig. 1 (a) Guanosine-5'-monophosphate **1** and 9-ethylguanine **2**, (b) guanine quartet $(1_4 \text{ and } 2_4)$.

Pinnavaia *et al.* and Laszlo and coworkers have independently reported that the aggregate of guanosine-5'-monophosphate (5'-GMP) in the presence of K^+ is a 2:1 complex (a sandwich complex) composed of two stacked 1_4 and one K^+ ion [Fig. 2(a)].5 In order to stabilize the sandwich structure, chelation of cations with phosphate groups is essential,^{5*b,c*} although stacking interactions between guanine bases and ion– dipole interaction between K^+ and carbonyl groups may also be important. In contrast to 5'-GMP, 9-alkylguanines do not have the ability to show such chelation. In this work, we have detected a 1:1 complex of guanine quartets with alkali metal cations by electrospray ionization mass spectrometry (ESI-MS)6 in the system of 9-ethylguanine **2**.†

Fig. 2 Schematic representations of (a) a 2:1 complex (a sandwich complex) and (b) a $1:1$ complex of a guanine quartet with alkali metal cations: O, guanine base; (""""), interaction between alkali metal cation (M+) and carbonyl group; (**—**), hydrogen bonding between guanine bases; --), chelation of alkali metal cation () with phosphate groups.

The ESI-MS spectrum of **2** [Fig. 3(a)] shows prominent peaks at m/z 202, 381 and 739, corresponding to $[2 + Na]$ ⁺, $[2₂ + Na]$ ⁺ and $[2_4 + Na]^+$ in the presence of 0.1 mM NaClO₄. Other $[2_n +$

Fig. 3 ESI-MS spectra of 9-ethylguanine **2**: in the presence of (a) 0.1 mM and (b) 0.01 mM NaClO₄.

Na]⁺ ($n = 3$ and $n \ge 5$) complexes were scarcely observed under these conditions. When the concentration of Na+ was reduced to 0.01 mM [Fig. 3(b)], only the $[2₄ + Na]$ ⁺ ion was observed. The above results indicate that the 1+1 complex of the guanine quartet (2_4) with sodium cation, $[2_4 + Na]^+$, is remarkably stable.

Similarly, 2 also gave the corresponding $[2_4 + M]$ ⁺ along with $[2 + M]$ ⁺ and $[2₂ + M]$ ⁺ in the presence of 0.1 mM of other alkali metal cations $(L⁺, K⁺, Rb⁺$ and $Cs⁺$) (Fig. 4). The peak intensity ratios of $[2_4 + M]^+ / [2 + M]^+$ for Li⁺ and Na⁺ (Li⁺, 0.69 and Na⁺ 0.80) are considerably higher than those of the other alkali

Fig. 4 ESI-MS spectra of 9-ethylguanine **2** in the presence of 0.1 mM MClO_4 : (a) $\text{M} = \text{Li}$, (b) $\text{M} = \text{K}$, (c) $\text{M} = \text{Rb}$ and (d) $\text{M} = \text{Cs}$.

metals (K+, 0.20; Rb+, 0.20; and Cs+, 0.16), suggesting that Li^{+} as well as Na⁺ form a stable $[2₄ + M]⁺$ complex. To confirm this tendency, ESI-MS measurements were performed in the presence of a pair of cations both 0.1 mM $(Na^{+}$ –Li⁺, Li⁺–K⁺, K⁺–Rb⁺, or Rb⁺–Cs⁺). The relative peak intensities of $[2_4 + M]$ ⁺ increased as $Na^+ > Li^+ > K^+ \geq Rb^+$, Cs^+ .

NMR studies of 2:1 complexes $[(1₄)₂ + M]⁺$ showed that the stability increases in the order $K^+ > Na^+$, $Rb^+ \geq Li^+$, Cs^+ .^{5*a*} The $K⁺$ -selectivity in the 2:1 complex shows that size of the cavity between two 5'-GMP quartets (1_4) is appropriate to accommodate K⁺ [Fig. 2(a)].^{5*c*} On the other hand, our results indicate that Li^+ and Na⁺ bind with 2_4 more strongly than does K⁺.⁷ The selectivity for Na⁺ and Li⁺ is possibly explained by a correspondence between the size of M+ and that of the central cavity of **2**4. Average distances from the center of **2**⁴ to carbonyl oxygens are estimated to be 2.41 Å by molecular orbital calculation,8,9 close to the experimentally observed Na–O distance (2.34 \pm 0.02 Å) by X-ray analysis.^{4c} Accordingly, Na⁺ can fit exactly in the central cavity of $\mathbf{2}_4$. Li⁺ (Li–O, 2.04–2.24) \AA ¹⁰) may also be located inside the cavity. On the other hand, K⁺, Rb⁺ and Cs⁺ (K-O₁, 2.75–2.81 Å;¹¹ Rb-O, 2.88–2.93 Å;¹¹ and Cs–O, $3.06-3.18$ Å¹²) are too large to fit in the central cavity of **2**⁴ and would be located out-of-plane.

In conclusion, we have observed $1:1$ complexes of $2₄$ with alkali metal cations in the systems of 9-ethylguanine **2** using ESI–MS. The sodium complex $[2₄ + Na]⁺$ was the most stable, in contrast to the K⁺-selective 2:1 complex of $1₄$. The differences in the composition and in the cation selectivity between $[(1_4)_2 + M]^+$ and $[2_4 + M]^+$ may be ascribed to the difference in stacking ability of **1**⁴ and **2**4. For **2**4, the absence of phosphate groups may significantly reduce the stacking interaction in comparison with $\mathbf{1}_4$. Therefore, the stability of $[2_4 +$ M ⁺ depends on the size of M ⁺ which is located in the central cavity of **2**4.

Notes and references

† *General procedure.* 9-ethylguanine **2** was purchased from Sigma and purified by reverse phase HPLC. The column (150 mm \times 4.6 mm i.d.) packed with TSKgel ODS-120T (5 μ m particle size) (Tosoh) was used in the LC-MS system. The solvents used in the LC-MS system were MeOH–H2O $(1:9, v/v)$ containing MClO₄ (M = Li, Na, K, Rb or Cs). 100 µl of 1.0 mM of an aqueous solution of **2** was applied to the HPLC. The flow rate was 1.0 ml min⁻¹. Mass spectra of the 9-ethylguanine fraction were obtained by introducing the effluent into the ESI-MS apparatus, a Hitachi M–1200HS mass spectrometer, just before the peak was eluted. The flow-rate of the pump was kept at $50 \mu l \text{ min}^{-1}$ while the effluent was introduced into the ESI-MS apparatus.

- 1 W. Guschlbauer, J. F. Chantot and D. Thiele, *J. Biomol. Struct. Dyn.*, 1990, **8**, 491.
- 2 M. Gellert, M. N. Lipsett and D. R. Davies, *Proc. Natl. Acad. Sci. USA*, 1962, **48**, 2013.
- 3 D. Sen and W. Gilbert, *Nature*, 1988, **334**, 364; F. Aboul-ela, A. I. H. Murchie and D. M. J. Lilley, *Nature*, 1992, **360**, 280; G. Laughlan, A. I. H. Murchie, D. G. Norman, M. H. Moore, P. C. E. Moody, D. M. J. Lilley and B. Luisi, *Science*, 1994, **265**, 520.
- 4 (*a*) W. I. Sundquist and A. Klug, *Nature*, 1989, **342**, 825; (*b*) F. W. Smith and J. Feigon, *Nature*, 1992, **356**, 164; (*c*) C. Kang, X. Zhang, R. Ratliff, R. Moyzis and A. Rich, *Nature*, 1992, **356**, 126.
- 5 (*a*) T. J. Pinnavaia, C. L. Marshall, C. M. Mettler, C. L. Fisk. H. T. Miles and E. D. Becker, *J. Am. Chem. Soc.*, 1978, **100**, 3625; (*b*) E. Bouhoutsos-Brown, C. L. Marshall and T. J. Pinnavaia, *J. Am. Chem. Soc.*, 1982, **104**, 6576; (*c*) C. Detellier and P. Laszlo, *J. Am. Chem. Soc.*, 1980, **102**, 1135.
- 6 ESI-MS has been successfully applied to detection of weakly associated complexes: M. Yamashita and J. B. Fenn, *J. Phys. Chem.*, 1984, **88**, 4451; M. Yamashita and J. B. Fenn, *J. Phys. Chem.*, 1984, **88**, 4671; C. M. Whitehouse, R. N. Dreyer, M. Yamashita and J. B. Fenn, *Anal. Chem.*, 1985, **57**, 675; J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse, *Science*, 1989, **246**, 64.
- 7 Successful assessment of correlation of solution and gas phase complexation of macrocyclic compounds with alkali metal cations by ESI-MS has been reported: K. Wang and G. W. Gokel, *J. Org. Chem.*, 1996, **61**, 4693; E. Leize, A. Jaffrezic and A. V. Dorsselaer, *J. Mass Spectrom.*, 1996, **31**, 537.
- 8 Density functional calculations (pBP/DN**) were carried out using SPARTAN 5.0, Wavefunction Inc., Irvine, CA.
- 9 A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- 10 I. L. Karle, *J. Am. Chem. Soc.*, 1974, **96**, 4000.
- 11 T. Sakamaki, Y. Iitaka and Y. Nawata, *Acta Crystallogr., Sect. B*, 1976, **32**, 768; Y. Iitaka, T. Sakamaki and Y. Nawata, *Chem. Lett.*, 1972, 1225.
- 12 T. Sakamaki, Y. Iitaka and Y. Nawata, *Acta Crystallogr., Sect. B*, 1977, **33**, 52.